

Faculty of Engineering School of Photovoltaic and Renewable Energy Engineering Advanced Hydrogenation Group

SPREE Alumni End of Year Event, 30th November 2017 UNSW Sydney

"PV module degradation: the impact of light induced degradation (LID) and how to fix it!"

Dr. Alison Ciesla

Other contributors: Catherine Chan, Ran Chen, Tsun Fung, Daniel Chen, Moonyong Kim, Brett Hallam, Chendany Sen, Utkarshaa Varshney, Carlos Vargas, Ziv Hameiri, Kyung Kim, Shaoyang Liu, Aref Samadi, Bruno Stefani, Iskra Zafirovska, Malcolm Abbott, CheeMun Chong, Stuart Wenham

• LID in Cz mono modules due to BO defect

C.R. Osterwald, A. Anderberg, S. Rummel, & L. Ottoson, 'Degradation Analysis of Weathered Crystalline-Silicon PV Modules' PVSC 2002

• LID in Cz mono modules due to BO defect

Typically 2-5% absolute power loss in the first 50 h in the sun!

LID in Cz mono modules due to BO defect

Hydrogen is the solution!

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??

- LID in Cz mono modules due to BO defect
- LID in multi-PERC ??

Module power: 100 %

-9.81 %

-0.67 %

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- 3 Key issues:
 - Incompatibility with diamond wire sawing due to texturing challenges

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- 3 Key issues:
 - Incompatibility with diamond wire sawing due to texturing challenges
 - Poorer wafer quality preventing full benefit of PERC design

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- 3 Key issues:
 - Incompatibility with diamond wire sawing due to texturing challenges
 - Poorer wafer quality preventing full benefit of PERC design
 - Severe LID

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- 3 Key issues:
 - Incompatibility with diamond wire sawing due to texturing challenges
 - Poorer wafer quality preventing full benefit of PERC design
 - Severe LID

K. Petter et al. (Hanwha Q-Cells) presented at 9th International Workshop on Crystalline Silicon for Solar Cell, Tempe Arizona, October 2016

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- 3 Key issues:
 - Incompatibility with diamond wire sawing due to texturing challenges
 - Poorer wafer quality preventing full benefit of PERC design

Advanced Hydrogenation

Severe LID

- LID in Cz mono modules due to BO defect solutions!
- LID in multi-PERC ??
- Not the only issue with multi...
- Hydrogenation

Current Modules Market Share

Currently dominated by multi-crystalline BSF cells

Shift to PERC

Our Solutions - Mono

Industry Partners for Advanced Hydrogenation

BE UNLIMITED

SHARE THE SUN, POWER THE FUTURE!

LID in mono

Sequential Photoluminescence Images

Advanced hydrogenation

Advanced hydrogenation

Commercialisation of Advanced Hydrogenation for Cz

- Provide control of the hydrogen charge state
- New tools implementing UNSW hydrogenation
 - Asia Neo Tech (Taiwan LED based tool)
 - Ke Long Wei (China Broad spectrum tool)
 - Schmid (Germany)
 - DR Laser (China Laser-based tool)
 - Meyer Berger (Switzerland)
- New generation of tools in 2018 with solution for multi LID

Evaluation of commercial prototypes

Cz PERC hydrogenation tools evaluation

Application to production lines of industry partners

B. Hallam et al. 33rd EUPVSEC (2017).

→ Final efficiency stable

High voltage commercial PERC cells

Using only industrial tools:

High voltage commercial PERC cells

Using only industrial tools:

SHJ Fabrication at Arizona State University

SHJ Fabrication at Arizona State University

With Advanced Hydrogenation	
Jsc	39.5 mA/cm ²
Voc	707 mV
FF	72.1 %
Eff	20.2 %

SHJ Fabrication at Arizona State University

<u>Multi: New Problems</u> Require New Solutions

Charge of Hydrogen and Defects

mc-Si much more complicated:

- defects of all charges
- varying concentrations
- different LID (longer timescales)

Charge of Hydrogen and Defects

Crystallographic defects need H charge-state control

- H+ for trapping
- H0 for dispersion
- H- for bonding
- Multi-step process for multi!

Conventional multi

Reject cast material

Record V_{OC} of 695 mV for p-type multi-crystalline silicon (pending independent confirmation)

Record V_{oc} of 695 mV for p-type multi-crystalline silicon (pending independent confirmation)

• 20 mV higher than record multi PERC cell

Record V_{oc} of 695 mV for p-type multi-crystalline silicon (pending independent confirmation)

- 20 mV higher than record multi PERC cell
- >700 mV will be achieved soon!

LID in multi PERC cells

Left: Relative voltage Right: PL images

C. Chan et. al, "Rapid stabilization of HP mc-Si PERC cells" JPV 2016

Effect of peak firing temperature on thermal degradation

1. Before Firing 2. After Firing 3. Degraded 4. Recovered

D. Chen et al, Evidence of an identical firing-activated carrier induced degradation in multicrystalline and monocrystalline silicon, 2017, Sol. Energy Mat. & Sol. Cells 172 (293-300)

Same defect present in Cz

b. Chen et al, Evidence of an identical firing-activated carrier induced degradation in multicrys silicon, 2017, Sol. Energy Mat. & Sol. Cells 172 (293-300)

Same defect present in Cz, cast-mono

D. Chen et al, Evidence of an identical firing-activated carrier induced degradation in multicrystalline and monocrystalline silicon, 2017, Sol. Energy Mat. & Sol. Cells 172 (293-300)

Same defect present in Cz, cast-mono and FZ!

D. Chen et al, Evidence of an identical firing-activated carrier induced degradation in multicrystalline and monocrystalline silicon, 2017, Sol. Energy Mat. & Sol. Cells 172 (293-300)

N-type is not immune!

Will be presented at Silicon PV and published next year!

Green Curve– Process used for Cz

C.E. Chan et al. Rapid Stabilization of High-Performance Multicrystalline P-type Silicon PERC Cells. *IEEE Journal of PV*, 2016

- Mc-Si PERC modules acquired from the market
- Including LID solutions and linear degradation warranty
- Light soaked \geq 70 ° C, ~1 sun (halogen source)
- Module PL characterisation (Zafirovska et al.)

I. Zafirovska et al. Module Inspection Using Line Scanning Photoluminescence Imaging, 32nd Eu PVSEC, 2016
I. Zafirovska et al. Detection of finger interruptions in silicon solar using line scan photoluminescence imaging, IEEE JPV 2017

- Mc-Si PERC modules acquired from the market
- Including LID solutions and linear degradation warranty
- Light soaked ≥70 ° C, ~1 sun (halogen source)
- Module PL characterisation [4][5]

•
$$\Delta Voc(V) = \frac{kT}{q} \cdot ln \left(\frac{PL_{new}}{PL_{initial}}\right)$$

I. Zafirovska et al. Module Inspection Using Line Scanning Photoluminescence Imaging, 32nd Eu PVSEC, 2016
I. Zafirovska et al. Detection of finger interruptions in silicon solar using line scan photoluminescence imaging, IEEE JPV 2017

Best published stability – Re-fire and laser

[2] C.E. Chan et al. Rapid Stabilization of High-Performance Multicrystalline Ptype Silicon PERC Cells. *IEEE Journal of PV*, 2016

Long term LID

Long term LID

Accelerated identification of long-term issue

Dark anneals accelerate the hydrogen

Tsun Fung et. al., Impact of Annealing on the Formation and Annihilation of Carrier-Induced Defects in Multi-crystalline Silicon. *Silicon PV* 2017

Dark anneals accelerate the hydrogen

Tsun Fung et. al., Impact of Annealing on the Formation and Annihilation of Carrier-Induced Defects in Multi-crystalline Silicon. *Silicon PV* 2017

Tests on modules

1. Dark anneal

Inside module laminator at standard lamination temp 150 ° C (10 hours)

- 2. Light soak
- ~1 Sun at T≥70 ° C

Module dark anneal and light soak cycles

Commercial module – long-term LID testing

- Dark anneal 10 hours at 150 °C (can do in laminator)
- Light soak and compare with control module

Commercial module – long-term LID testing

- Dark anneal 10 hours at 150 °C (can do in laminator)
- Light soak and compare with control module

Commercial module – long-term LID testing

- Dark anneal 10 hours at 150 °C (can do in laminator)
- Light soak and compare with control module
- Difference => indicator of extent of long-term LID

Hydrogen is the problem but also the solution!

8 new patents for manipulating H and the H charge state

- Auto-generation of H⁰ for enhanced hydrogen passivation
- Controlling the hydrogen charge state in crystallographic defects
- Controlling the hydrogen location in silicon
- Generation of H⁰ in n-type silicon
- Use of photons to control the charge state of hydrogen
- Novel thermal manipulation of hydrogen
- Use of hydrogen sinks to control hydrogen flow
- Solving LID in multi-crystalline silicon wafers

Thank You!

UNSW Advanced Hydrogenation Tool (1st Generation) - Now commercialised Improves silicon quality

-

- Solves light-induced degradation
 - \rightarrow Cheaper, more efficient and stable solar cells

