

## Dielectric solar concentrators for building integration of hybrid photovoltaic-thermal systems

#### Alberto Riverola

Applied Physics Section of the Environmental Science Department, University of Lleida

SPREE Public Research Seminar, UNSW – 14/08/2018

## Acknowledgments

#### **Supervisor**

Prof. Dr. Daniel Chemisana

#### PhD students

Alex Moreno

#### **Partners**

CNRS France Imperial College London

#### <u>Grants</u>

Ministry of Economy and Competitiveness (MINECO) of the Spanish Government (BES-2014-069596 and ENE2013-48325-R).



## Outline

Motivation

#### Dielectric liquids analysis

D. Chemisana, E.F. Fernandez, A. Riverola and A. Moreno, Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications, Renewable Energy, 123, 263-272, 2018

#### Mid-infrared emissivity modelling

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C.N. Markides, D.J. Paul, D. Chemisana and N. Ekins-Daukes, Midinfrared emissivity of crystalline silicon solar cells, Solar Energy Materials and Solar Cells, 174, 607-615, 2018

• Optical design

A. Riverola, A. Moreno and D. Chemisana, Performance of a dielectric PVT concentrator for building-façade integration, Optics Express, Accepted Manuscript, 2018

Energetic dynamic modelling and simulation

A. Moreno, A. Riverola and D. Chemisana, Energetic simulation of a dielectric photovoltaic-thermal concentrator, Solar Energy, 169, 374-385, 2018

• Future work





SPREE seminar - 14/08/18

Buildings account for 40% of total energy consumption & 36% of total  $CO_2$  emissions in the EU





Energy Performance of Buildings Directive, 20-20-20 objectives

http:// houseplans.pro / EPBD, European Commission, 2018

SPREE seminar - 14/08/18



## Nearly Zero-Energy Buildings (NZEB)

Total energy used by building ≈ renewable energy created on-site



#### SPREE seminar – 14/08/18

5

Universitat

de Lleida

Photovoltaic-thermal (PVT)



-High combined efficiency ~ 70%-60% less area than separated-Reduce cells temperature

Da Silva, R.M., Solar Energy, 84 (2010) 1985-1996 Affolter et al. PVT Roadmap (2006)



-Lighting control for windows -Low tracking requirements -Standard c-Si cells

https://alchetron.com/Concentrator-photovoltaics

SPREE seminar - 14/08/18





Direct-immersed LCPVT



First, direct-immersed CPVTs reported in late 70's based on a reflective concentrator

Not suitable for building integration (BI)

#### -Better temperature control -Optical filters

Chemisana, D., et al., Renewable Energy 85 (2016) 564–572 Vivar and Everett, Prog. Photovolt. Res. Appl, 22, 2014, 612-633

7



SPREE seminar - 14/08/18

#### Candidate fluids for direct immersion?

| Liquid | ٤ <sub>r</sub> | C <sub>e</sub>                       | ρ        | μ                      | [T <sub>melting</sub> -T <sub>boiling</sub> ] |
|--------|----------------|--------------------------------------|----------|------------------------|-----------------------------------------------|
|        |                | (J g <sup>-1</sup> K <sup>-1</sup> ) | (kg m⁻³) | (mPa s <sup>-1</sup> ) | (°C)                                          |
| DIW    | 80.2           | 4.18                                 | 1000     | 1.0                    | [0 - 100]                                     |
| IPA    | 18.6           | 2.60                                 | 785      | 2.4                    | [-89 - 82.6]                                  |
| IBA    | 15.8           | 2.30                                 | 802.5    | 3.9                    | [-108 - 107.9]                                |
| GLY    | 42.5           | 2.20                                 | 1100     | 1553                   | [17.8 - 290]                                  |
| DMSO   | 48.9           | 1.96                                 | 1260     | 2.7                    | [19 - 189]                                    |

- Spectral properties not affected operating at temperatures < 80°C.
- GLY becomes yellowish with time.
- DIW may oxidize metallic components.
- Alcohols (IPA, IBA) may degrade polymeric materials and sealants.
- Non-alcohols liquids melting points at temperatures >= 0°C.



#### **Optical Properties**

#### Minimise Fresnel losses.



| Dielectric liquid       | Power loss (%) |
|-------------------------|----------------|
| No liquid in the cavity | 18.1           |
| DIW                     | 8.22           |
| IPA                     | 7.46           |
| IBA                     | 7.16           |
| GLY                     | 6.20           |
| DMSO                    | 6.17           |
| λ                       | = 589 nm       |

SPREE seminar – 14/08/18



#### **Optical Properties**

Optical filters should have:

#### Ideal Filter window (IFW)

Minimum spectral bandwidth which comprises 75% of spectral current







1.6

#### **Optical Properties**





0.7

SPREE seminar - 14/08/18

11

3



1.416

**Optical Properties** 



SPREE seminar – 14/08/18



#### **Optical Properties**

Spectral transmittances and IFW ranges for c-Si  $\rightarrow$  Pure substances



de Lleida

#### **Optical Properties**



SPREE seminar – 14/08/18

#### **Thermal Properties**

- High specific heat and thermal conductivity to maximise thermal exchange.
- Low coefficient of expansion.
- Appropriate range of temperatures between melting and boiling points.

From the optical analysis:

| Dielectric liquid | Irradiance transmitted (%), |  |  |  |
|-------------------|-----------------------------|--|--|--|
|                   |                             |  |  |  |
| DIVV              | 1.15                        |  |  |  |
| IPA               | 5.01                        |  |  |  |
| IBA               | 4.43                        |  |  |  |
| DMSO              | 25.7                        |  |  |  |
| GLY               | 2.07                        |  |  |  |





 $\Delta T = 7^{\circ}C$ 

Universitat

#### **Thermal Properties**

 High liquid density and low viscosity, maximise heat removal with low pressure losses.

Pumping power for 1m<sup>2</sup> flat-plate collector



Power dissipated =  $500 \text{ W/m}^2$ 

16

SPREE seminar – 14/08/18

## **Dielectric liquids analysis**

Chemisana, D., et al., Renewable Energy 123 (2018) 263-272

- Adequate melting points to avoid freezing
- High transmittance for the bandwidth fixed based on the IFW criteria,
- High absorbance for photons above the upper interval of the IFW
- Good thermal characteristics to remove heat with high efficiency
- Low pumping power

DIW IPA DIW+IPA DIW+DMSO





SPREE seminar – 14/08/18

## Mid-infrared emissivity modelling Riverola, et al., Solar Energy Materials and Solar Cells, 174 (2018) 607-615

## Why is it important?

- Determining operating temperatures
- Heat transfer calculations
- Radiative cooling
- Enabling PVT systems to operate at higher temperature

#### **Measuring emissivity**



SPREE seminar – 14/08/18

Wafer thickness ~ 200 µm Texture features  $\sim 4 \ \mu m$ Coatings ~ 50 nm

Green MA, 1995, Silicon solar cells: advanced principles and practice

19



- Ray tracing / Monte-Carlo computationally costly
- Full wave optical computationally prohibitive

#### Mid-infrared emissivity modelling Riverola, et al., Solar Energy Materials and Solar Cells, 174 (2018) 607-615



## Mid-infrared emissivity modelling

Riverola, et al., Solar Energy Materials and Solar Cells, 174 (2018) 607-615

de Lleida



SPREE seminar – 14/08/18

Mid-infrared emissivity modelling Riverola, et al., Solar Energy Materials and Solar Cells, 174 (2018) 607-615



de Lleida

SPREE seminar – 14/08/18

#### **Encapsulated c-Si cell**





SPREE seminar - 14/08/18



- Unencapsulated mono-crystalline silicon solar cells have a MIR emissivity of ~80%
- Encapsulated mono-crystalline silicon solar cells have a MIR emissivity of ~90%





Limited thermal efficiency





#### **Requirements and goals**

- Building integration potentially over façades and windows
- Low-Medium concentration
- Direct-immersed PVs in dielectric liquids
- Partially cover electricity and heat energy demands of buildings
- Reasonable performance
- Cost-effective









SPREE seminar - 14/08/18



*Riverola, et al., Optics Express, 2018, Accepted Manuscript* 



SPREE seminar – 14/08/18

26

-30

-30 -20

-10

0 0 x (millimeters)

×↓↓ Universitat de Lleida

10 20 30

#### **Ray-tracing characterisation**

| Magnitude         | DIW  |      | IPA  |      |      |      |
|-------------------|------|------|------|------|------|------|
| Geometrical       | 10   | 15   | 20   | 10   | 15   | 20   |
| Concentration (-) | 10   | 15   | 20   | 10   | 15   | 20   |
| Weighted Optical  | 0.76 | 0.76 | 0.75 | 0.01 | 0.91 | 0 90 |
| Efficiency (-)    | 0.70 | 0.76 | 0.75 | 0.01 | 0.01 | 0.00 |
| Non-Uniformity    | 0.14 | 0.10 | 0.20 | 0.12 | 0.40 | 0.41 |
| (-)               | 0.14 | 0.19 | 0.20 | 0.13 | 0.40 | 0.41 |
| Acceptance Angle  | 1 11 | 0.71 | 0.47 | 1 00 | 0.52 | 0.40 |
| ± (°)             | 1.11 | 0.71 | 0.47 | 1.08 | 0.55 | 0.40 |

Weighted Optical Efficiency is defined for the Si spectral response bandwidth

$$\frac{\text{Weighted Optical}}{\text{Efficiency}} = \frac{J_{\text{SC}}}{J_{\text{SC},\eta=1}}$$

SPREE seminar – 14/08/18



0

-3



0

X (millimeters)

10 DIW **IPA** 8 Relative Efficiency (-) 9.0 8.0 8.0 Concentration (suns) 6 4 2 0.2 DIW **IPA** 

2

3

0

0

2

4

Misalignment Angle (°)

## **Optical design**

Riverola, et al., Optics Express, 2018, Accepted Manuscript



8

10

6

SPREE seminar – 14/08/18

-2

-1

SPREE seminar - 14/08/18

## **Optical design**

1.

2. BK7

dielectric liqu absorption ......

4.

Riverola, et al., Optics Express, 2018, Accepted Manuscript

What's the main difference between both systems?

| $\Theta_n$                                                                                                      |                |                               |      |  |
|-----------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|------|--|
| AIR 3.                                                                                                          |                | DIW                           | IPA  |  |
| BK7<br>absorption                                                                                               | Optical Loss   | <b>Optical Efficiency (%)</b> |      |  |
| θω                                                                                                              | Fresnel 1      | 92.9                          | 92.9 |  |
| 5.                                                                                                              | BK7 abs.       | 99.5                          | 99.5 |  |
|                                                                                                                 | Fresnel 2      | 98.7                          | 99.0 |  |
| ic liquid                                                                                                       | Liquid abs.    | 86.5                          | 92.0 |  |
| ion                                                                                                             | Reflected cell | 96.0                          | 95.9 |  |
| the second se |                |                               |      |  |



*Riverola, et al., Optics Express, 2018, Accepted Manuscript* 

What's the main difference between both systems?



SPREE seminar - 14/08/18



*Riverola, et al., Optics Express, 2018, Accepted Manuscript* 

#### What about the azimuth?



SPREE seminar - 14/08/18



*Riverola, et al., Optics Express, 2018, Accepted Manuscript* 

What about the azimuth?



SPREE seminar - 14/08/18



#### SPREE seminar – 14/08/18

## Optical design

*Riverola, et al., Optics Express, 2018, Accepted Manuscript* 

Fabrication and experimental optical performance

0 0.1 0.2 0.3





0.5 0.6 0.7 0.8

0.4 Voltage (V)



## Energetic dynamic modelling and simulation

## **Thermal characterisation**



#### **Experimental validation**



## Great agreement!





SPREE seminar – 14/08/18



## Energetic dynamic modelling and simulation

Thermal characteristic curve under wind velocity of 2 m/s



Churchill, S. W., and Bernstein, M., J. Heat Transfer 99 (1977), 300

SPREE seminar – 14/08/18



## Energetic dynamic modelling and simulation

## Simulation – Selected locations?





Köppen-Geiger climate classification





## Energetic dynamic modelling and simulation

Building description and demands



- 2-story single family house
- Habitable area = 144.5 m<sup>2</sup>

Energy demands

- Domestic Hot Water (DHW)
  → Gas boiler
- Space Heating & Cooling (SH&C)
  → Reversible Heat Pump

| Location  | DHW      | SH       | SC       | Electricity | _<br>TRNbuild too |
|-----------|----------|----------|----------|-------------|-------------------|
| Location  | (kWh/m²) | (kWh/m²) | (kWh/m²) | (kWh/m²)    | DUMAAA            |
| Lisbon    | 16.3     | 53.3     | 12.6     | 31.7        | DHVVCalc          |
| Barcelona | 16.9     | 74.4     | 11.1     | 37.5        |                   |
| Genoa     | 16.7     | 80.2     | 15.5     | 40.2        | _                 |

#### SPREE seminar - 14/08/18



## Energetic dynamic modelling and simulation

## Building description with CPTV collectors







## Energetic dynamic modelling and simulation

## Simulated system topology





CPVT Thermal prod.

• DHW

•

SH  $\rightarrow$  Radiant floor (RF)

CPVT Electrical prod.

- A&L
- SH&C
  → Heat Pump (HP)

self-consuming connected to power grid with backup batteries



SPREE seminar – 14/08/18



## Energetic dynamic modelling and simulation

Domestic Hot Water (DHW)





SPREE seminar - 14/08/18

## Energetic dynamic modelling and simulation

Space Heating (SH) and Cooling (SC)



 $SF_{SH\&C} = 100 \left( 1 - \frac{Energy SH \& C \text{ from grid}}{Energy \text{ demand } SH \& C} \right)$ 

41

SPREE seminar – 14/08/18

## Energetic dynamic modelling and simulation

**Electricity demands** 

 $SF_{ELECTRICAL} = 100 \left( \frac{Electrical \, energy \, from \, CPVT}{Electrical \, energy \, demand} \right)$ 



SPREE seminar - 14/08/18

## Future work

- Improve the thermal efficiency, reducing convective and radiative losses.
- Test for a long time period and over a real building or a full-scale testing unit.
- The energy output could be enhanced by solar cells with lower temperature coefficients and higher cell efficiencies.



# Q&A

# Thanks for your attention!

Alberto Riverola Applied Physics Section of the Environmental Science Department, University of Lleida alberto.riverola@macs.udl.cat

SPREE seminar – 14/08/18

