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Motivation

If we are supplying energy into the electricity grid, it is important
that we have knowledge of the expected output from the farm to
the grid.

A probabilistic forecast:

I provides information about all expected outcomes

I allows one to both assess a wide range of uncertainties and
facilitate decision making.
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Overview

Our approach to developing a probabilistic forecast:

1. develop a point forecast

2. develop a probabilistic forecast (prediction intervals).

Today we will look at:

1. p1i1 methods

2. p2i2 methods

3. results and performance

4. synthetic sequences of solar radiation.
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Data

Locations and Köppen-Geige climate classification system:

I Adelaide: Mediterranean

I Darwin: tropical

I Mildura: semi-arid.

Each data set consists of 10 years of hourly global horizontal
irradiation (GHI) values (8 years in-sample, 2 years out-of-sample).



Point forecast i1

The hourly global horizontal irradiation (GHI) It for Mildura is
given as

It = Ft + At + Zt ,

where Ft is a seasonal component, At is an autoregressive
component (a linear combination of previous time steps), and Zt is
a noise such that EZt = 0, EZtZl = 0 if t 6= l and EZ 2

t = σ2t . That
is, Zt may be heteroscedastic.



Point forecast i1
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Figure 1: Power spectrum of hourly global horizontal irradiation (GHI) for
Mildura. The last three significant frequencies are not shown.



Point forecast i1

The Fourier component Ft of It is given as

Ft = α0 + α1 × cos
2πt

8760
+ β1 × sin

2πt

8760
+

α2 × cos
4πt

8760
+ β2 × sin

4πt

8760
+

11∑
i=3

3∑
n=1

1∑
m=−1

[αi × cos
2π(365n + m)t

8760
+

βi × sin
2π(365n + m)t

8760
]

Note that in examples we have tested, the amount of the variance
explained by the Fourier Series is approximately 80-85%.
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Figure 2: Mildura: observed vs. Fourier global horizontal irradiation
(GHI) for a clear sky day on January 2, 2003 (left panel) and a cloudy
day on January 1, 2003 (right panel).



Point forecast i1

Figure 3: Plotted autocorrelation function (ACF) of the global horizontal
irradiation (GHI) deseasoned residuals of Mildura, with 5% significance
limits shown in red.



Point forecast i1

Figure 4: Plotted partial autocorrelation function (PACF) of the global
horizontal irradiation (GHI) deseasoned residuals of Mildura, with 5%
significance limits shown in red.



Point forecast i1

The ACF decaying slowly, while the PACF has significant spikes at
lags one and two indicating an autoregressive model of order 2,
AR(2).

However, after trying to overfit the model with an AR(3) process,
it is found that the AR(3) process showed slightly better
performance and the p-values for all three coefficients are
significant at the 5% level.



Point forecast i1
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Figure 5: Observed vs. forecast global horizontal irradiation (GHI) for a
clear sky day on January 2, 2003 (left panel) and a cloudy day on
January 1, 2003 (right panel).



Probabilistic forecast i1

We assume the hourly errors are heteroscedastic and that this is
driven by a specific sun position.
So we place the hourly daytime errors into a 2-dimensional matrix
according to sun elevation and sun hour angle.
We do this to take care of the systematic variation in variance in
the GHI time series.
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Figure 6: Sun map: Zt binning matrix



Probabilistic forecast i1

Student Version of MATLAB

Figure 7: Histograms of errors in each bin of the two-dimensional array, in
respect to sun position (as described above), for Mildura.



Probabilistic forecast i1

Algorithm 1: Algorithm for generating (100-α) prediction intervals
using the simplified method.

Data: Out-of-sample hourly daytime forecasting model It with
length N, and the two-dimensional array of errors binned
according to sun position Bi ,j .

1 for t = 1, . . . ,N do
2 calculate sun elevation index i according to sun elevation for It ;
3 calculate sun hour angle index j according to sun hour angle

for It ;

4 calculate the lower α/2 percentile B
α/2
i ,j from bin Bi ,j ;

5 calculate the upper 100− α/2 percentile B
100−α/2
i ,j from bin

Bi ,j ;

6 generate lower prediction interval L100−αt = Ît + B
α/2
i ,j ;

7 generate upper prediction interval U100−α
t = Ît + B

100−α/2
i ,j ;

8 end
Result: Out-of-sample hourly daytime (100-α) upper and lower

prediction interval, L100−αt and U100−α
t respectively .



p1i1

A. Grantham, Y. R. Gel, and J. Boland, “Nonparametric
short-term probabilistic forecasting for solar radiation,” Sol.
Energy, vol. 133, pp. 465–475, 2016.



New work: p2i2

We make improvements to the:

I point forecast → i2

I probabilistic forecast → p2



Point forecast i2



Point forecast i2

The new point forecasting method combines perfect knowledge of
the day-ahead daily solar radiation with our previous point
forecasting method. Obviously perfect knowledge of the day-ahead
daily solar radiation is not feasible.
Ideally we would prefer to use a day-ahead daily forecast from a
numerical weather prediction (NWP) model because a daily NWP
forecast is known to be very accurate. However, a NWP is
unavailable at this time. Instead we use perfect knowledge of the
day-ahead daily value as a proxy.
The idea here is to demonstrate the potential performance
improvements of combining a daily NWP with an hourly solar
radiation forecast, generated from our statistical model. Statistical
methods perform better at hourly time scales and NWP methods
perform better at daily time scales.



Point forecast i2

In order to combine the hourly point forecasting with the known
day-ahead (or a NWP day-ahead), we take the hourly Fourier Ft
component for the day-ahead and scale it so that the daily sum of
the scaled Ft matches the known day-ahead forecast.



Probabilistic forecast i2

i1: global systematic variation in variance of solar radiation.

i2: we look at conditional heteroscedasticity (change in variance).

The final errors are uncorrelated but dependent - the squared error
terms, a proxy for variance, are correlated. This is the so-called
ARCH effect- autoregressive conditional heteroscedastic. Usually
when this happens one uses an ARCH or GARCH model for
forecasting the variance.
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Probabilistic forecast i2

However we found that instead an exponential smoothing form was
more useful.

St+1 = αZ 2
t + (1− α)St , 0 < α < 1, t ≥ 2.

with S2 = Z 2
1 .

Since we are forecasting the variance, and then constructing a
prediction interval using this, we have to perform this assuming the
noise is normally distributed, which is not true.

So, we first had to use a normalising transformation, then forecast
the variance, construct the PIs, and then transform back.



Probabilistic forecast i2

Conditional heteroscedastic probabilistic forecast method:

1. Find F (Zt , i , j), the cumulative probability of Zt for bin i , j .

2. Transform Zt according to γt = F−1(Zt , i , j), with
γt ∼ N(0, 1). Note that this is done each time according to
the bin currently referenced.

3. Find the Exponential Smoothing forecast model
ψ2
t = αγ2t + (1− α)ψ2

t , with 0 < α < 1.

4. Apply the forecast model to get prediction intervals for σt .
For instance, for a 95% PI, use σ̂t ± 1.96ψt

5. Apply the inverse transform to take these limits of the
prediction intervals back to the equivalent values for R̂t . Note
once again that one has to do this with reference to the
particular bins according to time of day and solar elevation.

6. Add the Fourier Series Representation to all to get forecast
plus bounds for the original data.



Preformance metrics: point forecast

Table 1: Point forecast: normalised root mean square error (NRMSE) (%)

Point forecast Original (p1) Known day ahead (p2)

Adelaide 19.14 15.56
Darwin 22.75 19.16
Mildura 15.29 12.34



Preformance metrics: point forecast

Table 2: Point forecast: mean bias error (MBE) (%)

Point forecast Original (p1) Known day ahead (p2)

Adelaide 0.72 0.39
Darwin 0.85 0.52
Mildura 1.32 0.57



Preformance metrics: point forecast

Table 3: Point forecast: mean absolute error (MAE) (%)

Point forecast Original (p1) Known day ahead (p2)

Adelaide 13.25 10.57
Darwin 15.86 13.22
Mildura 10.83 8.43



Performance metrics: probabilistic forecast

Prediction interval coverage probability (PICP) for a given
confidence level α:

PICP =
1

L

L∑
t=1

Ct ,

where L is the total number of forecasts and

Ct =

{
1, L100−αt ≤ It+1 ≤ U100−α

t ,

0, otherwise.

Because coverage is easily obtained by having wider PI widths, we
use the normalised averaged width (PINAW):

PINAW =
1

LImax

L∑
t=1

(U100−α
t − L100−αt ),

where Imax = 1000Wm−2.



Performance metrics: probabilistic forecast

The coverage width-based criterion (CWC) metric quantifies the
trade-off between coverage and prediction interval width

CWC = PINAW (1 + γ(PICP)e−µ((PICP)−α)),

where µ = 10 and

γ =

{
0, PICP ≥ /alpha,
1, PICP < alpha.

BUT this doesn’t penalise over-coverage the same as
under-coverage. So we use

CWC = PINAW (1 + (PICP)e−µ|(PICP)−α|),

and treat over-coverage and under-coverage equally.
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Performance metrics: probabilistic forecast
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Figure 8: Adelaide: coverage width-based criterion (CWC)
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Figure 9: Darwin: coverage width-based criterion (CWC)



Probabilistic forecasts
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Figure 10: Adelaide: 95% probabilistic forecast for a clear sky
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Figure 11: Adelaide: 95% probabilistic forecast for a cloudy sky
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Figure 12: Darwin: 95% probabilistic forecast for a clear sky
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Figure 13: Darwin: 95% probabilistic forecast for a cloudy sky



Probabilistic forecasting conclusions

Results are mixed:

I Adelaide and Mildura: i2 is better than i1

I Darwin: i1 is better than i2

These results suggest that the ideal probabilistic forecasting
method might be climate specific.

Coming soon: incorporate a n-step ahead hourly numerical weather
prediction (NWP) forecast into our one-step-ahead hourly point
forecast.



Synthetic sequences of GHI

The hourly global horizontal irradiation (GHI) It for Mildura is
given as

It = Ft + At + Zt ,

The procedure for generating synthetic hourly GHI is

Ĩt = Ft +φ1(Ft−1− Ĩt−1) +φ2(Ft−2− Ĩt−2) +φ3(Ft−3− Ĩt−3) +Zt ,

where Ĩt is the synthetic hourly GHI for time point t (in hours), Ft
is the Fourier component and φ1, φ2 and φ3 are the coefficients for
the autoregressive order three (AR(3)) component. The procedure
follows the hourly model but includes a bootstrapped white noise
term Zt . The white noise term Zt is bootstrapped (sampled with
replacement) from Bi ,j (two-dimensional matrix of errors),
according to the corresponding sun elevation and hour angle.
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Synthetic sequences of GHI

The synthetic hourly GHI will include patterns of GHI that have
not occurred in the recorded data but are nonetheless equally as
likely to occur. That is, the synthetic sequences have the same
statistical properties as the observed:

I the same underlying hourly distributions

I the same serial hourly correlation structure

I the same underlying daily sum distribution

I the same daily serial correlation structure.



Synthetic sequences of GHI
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Figure 14: Example of five synthetic daily global horizontal irradiation
(GHI) estimates for the month of January.



Synthetic sequences of GHI

5 10 15 20
0

200

400

600

800

1000

1200

1400

G
H

I (
W

h 
m

−
2 )

Hour of day
Student Version of MATLAB

Figure 15: Example of five synthetic hourly global horizontal irradiation
(GHI) estimates for January 1.



Synthetic sequences of GHI

Table 4: Frequency distribution of consecutive days in 100 years with
daily global horizontal irradiation (GHI) below 2,000 Wh m−2 using the
eight years of observed daily GHI, 1995–2002, and the 1,000 synthetic
daily GHI Î ∗t years (instances), for Mildura.

Consecutive days Observed Synthetic

1 1512.5 1596.5
2 362.5 367.0
3 112.5 105.4
4 50.0 32.7
5 12.5 10.5
6 0.0 3.6
7 0.0 1.1
8 0.0 1.0
9 0.0 0.1



Synthetic sequences of GHI conclusions

The synthetic data can be used, for example, as input for testing
the performance and operation of a solar energy system for all
supply scenarios resulting in the design of a more reliable system.

This work is part of a bigger endeavour, where we start with
synthetic yearly, then synthetic seasons from that and then daily,
then hourly and then 5 minute or minute, all in a chain.


