

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Photovoltaics: Technology Trends and Future Perspectives

Adam Shor Innovation Scout for Photovoltaics

Presentation to SPREE / UNSW

Sydney, Australia July 26, 2012

Key Takeaways

- Industry growth around conventional photovoltaics will make it difficult to unseat incumbent technologies in traditional markets
 - Crystalline Silicon PV will remain the dominant technology while other products are developed for specific markets
- Power electronics will be smarter, module integrated, higher efficiency, and enable improved grid support and functionality
 - This will lead to higher efficiency systems combined with easier installation, ultimately yielding improved system economics.
- Improvements across the value chain will result in continuous downward system pricing trends

Historic and Current PV Industry Pricing

Source: Paula Mints – Navigant PV Services Program

Global PV Market Forecast

RECESSION, CONSERVATIVE, ACCELERATED FORECAST 2006-2016 (MWp)

Source: Paula Mints - Navigant PV Services Program

Module Production in 2011

 By Technology 2%_{5%} 6% Crystalline Silicon: 30,213, 87% CdTe: 2,062, 6% CIGS: 866, 2% 87% Thin Film Silicon: 1,647, 5% By Region 19 China: 21,265, 61% 5% 14% Rest of Asia: 5,399, 15% U.S.: 1,333, 4% 4% Europe: 4,815, 14% 61% 15% Japan: 1,590, 5% RoW: 386, 1%

> EPEI ELECTRIC POWER RESEARCH INSTITUTE

Source: GTM, PV News, May 2012

Production Costs are Coming Down

MANUFACTURING COST STRUCTURE - TIER 1 CHINESE WAFER/CELL/ MODULE PRODUCER, Q3 2011-Q4 2012E

Source: GTM, PV News, May 2012

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Thinner Wafers = Reduced Material Cost

- Twin Creeks Technologies unveils the Hyperion "Ion Cannon" to create thinner silicon wafers.
- Wire saw technology transitioning from traditional wire / abrasive slurry mix to diamond wire cutting, reducing "kerf" losses while improving wafer yield.

Thinner Wafers = Reduced Material Cost

- Twin Creeks Technologies unveils the Hyperion "Ion Cannon" to create thinner silicon wafers.
- Wire saw technology transitioning from traditional wire / abrasive slurry mix to diamond wire cutting, reducing "kerf" losses while improving wafer yield.

Rooftop Specific Technologies for Weight Constrained Projects

LECTRIC POWER ESEARCH INSTITUTE

AC Modules Will Be Here Shortly

 Streamlined design will lead to inverters on the module, leading to higher efficiency, faster Installation, and improved economics.

The Onset of the Smart Inverter

Improving Grid Reliability

 Inverter able to ride through momentary interruptions

Providing VAR Support

 Finer steps and faster response compared to capacitor banks

Power Curtailment

 Faster Response for power curtailment

Distributed PV Ownership Also Growing

Third-party owned PV gaining market share in multiple markets

- Distributed PV economics depend on incentives, retail rates and rate design, e.g., net metering
- Third party residential PV markets growing rapidly, > 60% market share in CA in 2012
- PV leasing products appear to be enticing new demographics to adopt PV in LA
- Third-party adoption trends likely to extend to other states

Source: Drury et al. 2012 (NREL)

Performance Improvements and Market Enablers for Conventional PV

- Transition to rear contact cells (reduced front shading)
- Copper metallization in lieu of silver
- Cheap tandem cell architecture based on crystalline – Silicon cell foundation
- Selective emitters (improved blue response, better able to absorb high energy photons)
- Gen 110 (Startup designed to identify high rate customers for third party installations)
- Third Party leasing via no upfront costs
- Breakthrough technologies exist... but constrained to lab development through 2020

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Low Concentration PV

Third Generation PV

 Third Generation (High Efficiency, Multi-junction, Multi-exciton, Hot Carrier Cells)

 More involved cell architecture, primarily research based currently with the exception of multi-junction (MJ), significantly higher efficiencies

Key Takeaways

- Industry growth around conventional photovoltaics will make it difficult to unseat incumbent technologies in traditional markets
 - Crystalline Silicon PV will remain the dominant technology while other products are developed for specific markets
- Power electronics will be module integrated, smaller, higher efficiency, and enable improved grid support and functionality
 - This will lead to higher efficiency systems combined with easier installation, ultimately yielding improved system economics.
- Improvements across the value chain will result in continuous downward system pricing trends

Together...Shaping the Future of Electricity

