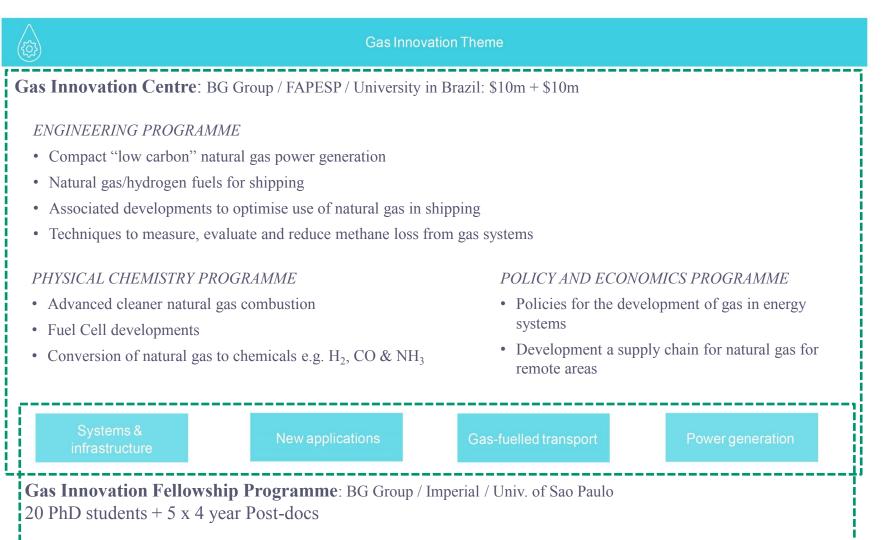
Imperial College London

Energy systems modelling for 21st century energy challenges

Dr Adam Hawkes CEng MEI Deputy Director, Sustainable Gas Institute

The SGI will lead research and define innovative technologies that enable natural gas to play a key role in a low carbon world.


SGI Hub and Spoke Integration

PROVIDES INTEGRATING RESEARCH, TRANSLATION AND EDUCATION ACTIVITIES

	SGI Spoke: Gas Innovations	SGI Spoke: Energy Efficiency	SGI Spoke: Carbon Capture, Storage and Use	New SGI Spoke: ???	
50%		SGI HUB RESE Gas Technology Mo Sustainable Ga Gas and the E Gas in Future E	delling Environment as Technology Environment		
35%		SGI HUB KNOWLEDGE TR	ANSFER (TRANSLATION)		
15%		SGI HUB EI	DUCATION		
		<u>s</u>	\bigcirc		

Gas Innovations Collaboration

The SGI team

Directors

Research

PhD

Nigel Brandon-Director

Adam Hawkes – Deputy Director

Victoria Platt – Ops Director

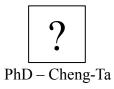
Sara G – Modelling Lead

Daniel - Modelling

PDRA - Demand

Kris-Tech. Lead

Daniel - Tech


Sara B- Tech

Jonny- UK

PhD – Cecilia

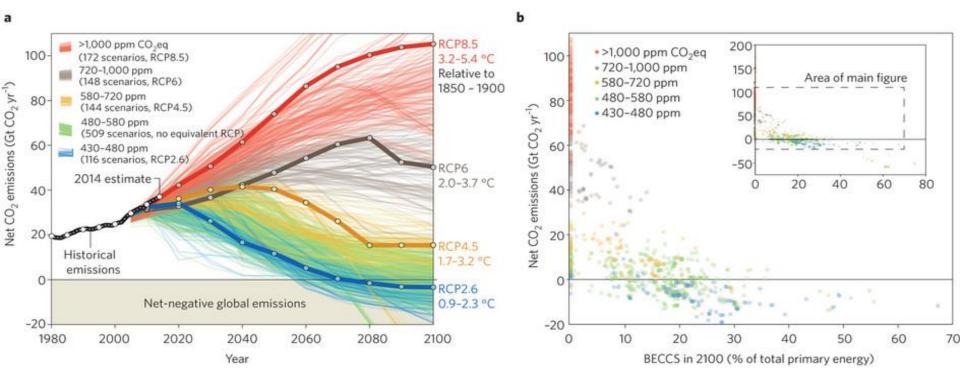
Contents

- What is energy systems modelling? Why do we care about it?
- A taxonomy
- Fit for purpose?
- Activity at Imperial College
 - MUSE
 - TIAM-Grantham
- New challenges

What is energy systems modelling?

Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful.

George Box


Reference Energy System

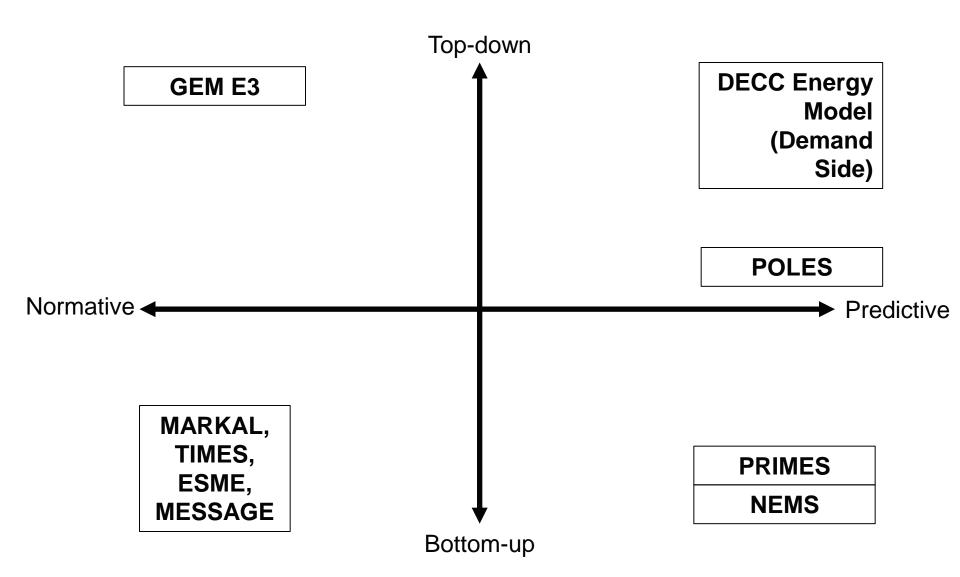
Resources	Upstream Processing	Conversion	End-Use Technology	Demands for Energy Services
Exogenously specified price- quantity pairs that mimic supply curves	Technologies that convert one energy carrier to another	Technologies that produce low temperature heat or electricity	Technologies that meet service demand	Exogenously specified service demand (and its elasticity)
e.g. natural gas	e.g. biomass gasification	e.g. CCGT	e.g. heat pump	e.g. residential heat demand

What is energy systems modelling?

IPCC 5th Assessment Report

- 1184 scenarios were produced from 31 whole system models
- Quantitative basis for working group 3 conclusions (mitigation)

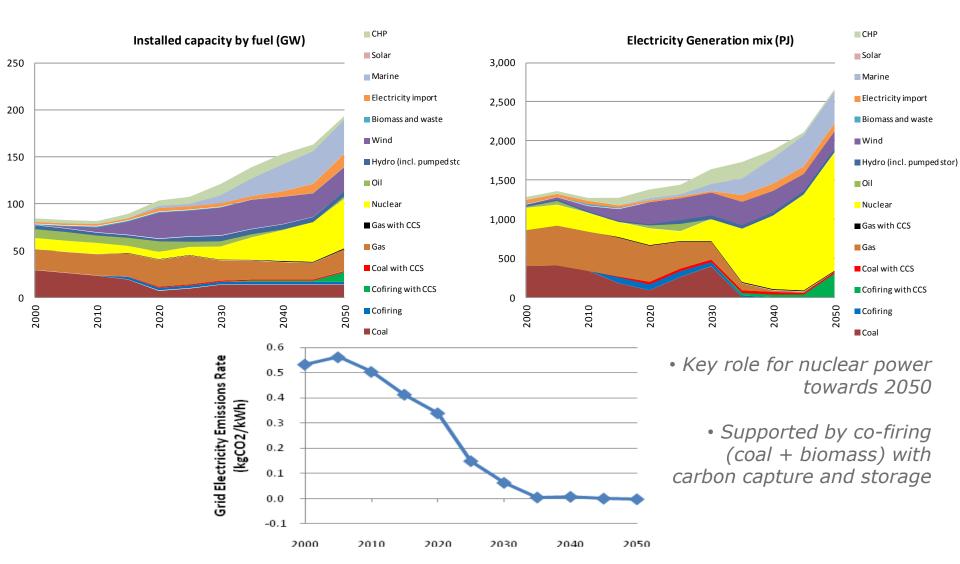
Source: Fuss et al (2014) Betting on negative emissions. Nature Climate Change 4, 850-853



A taxonomy

Normative	-	Predictive
General equilibrium	_	Partial equilibrium
Top-down	_	Bottom-up
Myopic	_	Perfect foresight
Central planner	_	Multiple agents
Deterministic	_	Stochastic
Supply-side focus	_	Demand-side focus

One energy modelling axis

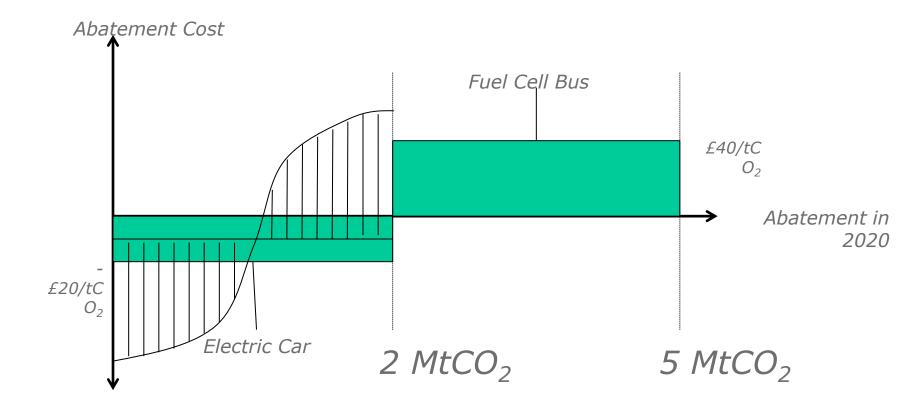


Fit for purpose? Recent criticisms

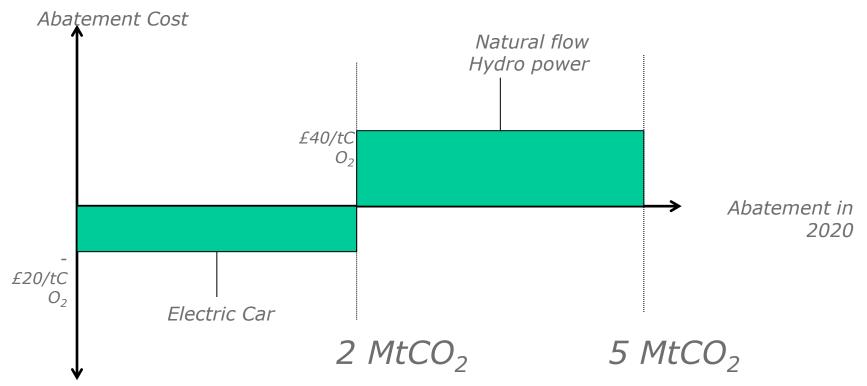
- Richard A. Rosen, Critical review of: "Making or breaking climate targets the AMPERE study on staged accession scenarios for climate policy", Technological Forecasting and Social Change, Volume 96, July 2015, Pages 322-326
 - Differences between models not treated in a systematic and credible way
 - Fundamental impossibility of forecasting
- Robert S. Pindyck, The Use and Misuse of Models for Climate Policy. NBER Working Paper No. 21097. Issued in April 2015
 - Perception of knowledge and precision that is illusory
 - Can fool policy-makers into thinking that the forecasts the models generate have some kind of scientific legitimacy
 - Monte Carlo buys us nothing

Fit for purpose? e.g. Power Generation

Lies my MACC told me (1) – technology optimism


- Nuclear Fusion, Energy Efficient Lighting, Loft Insulation
- Assumptions: Snapshot year = 2100. Discount rate = 8%

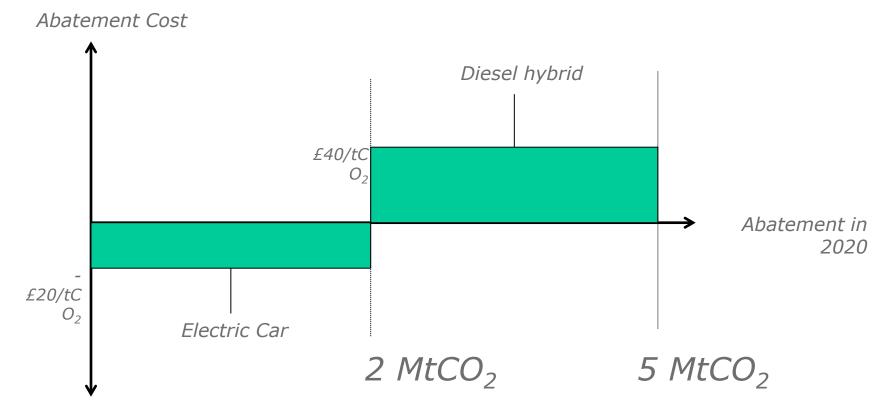
Measure	Capital Cost	Annual Savings	Year Available	CO₂ savings 2100	Abatement Cost
Fusion	£20 billion	1.4 Mt	2050	72.3 Mt	-£12/tCO2
Lighting	£4	0.0292 t	2010	0.1168 t	£18/tCO2
Insulation	£400	0.378 t	2010	9.82 t	£13/tCO2


 \Rightarrow Adopt nuclear fusion in 2050.

No acknowledgment of technical risk, or aggregate CO₂ reductions

Lies my MACC told me (2) - uncertainty

Lies my MACC told me (3) – path dependency



Abatement Target = 2MtCO2 in 2020

Adopt electric car only....But in order for the electric car to deliver CO_2 reduction, decarbonisation of the power sector is required => Natural flow hydro is required

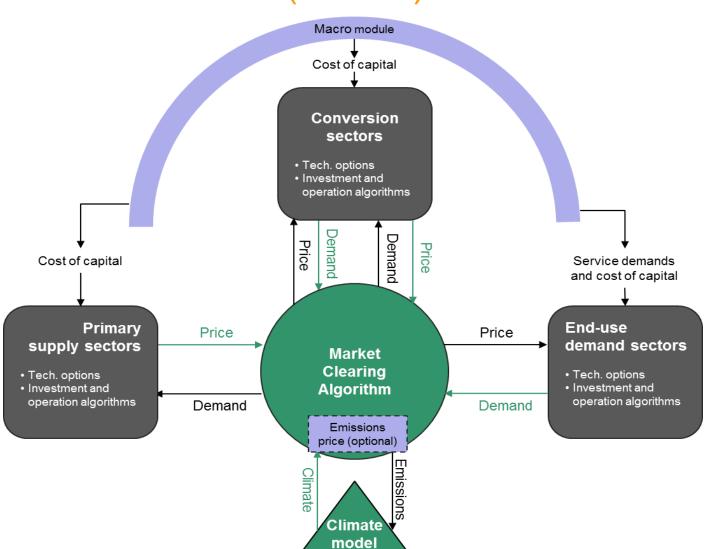
Are emissions reductions properly distributed between interacting measures?

Lies my MACC told me (4) - exclusivity

Abatement Target = 5MtCO2 in 2020

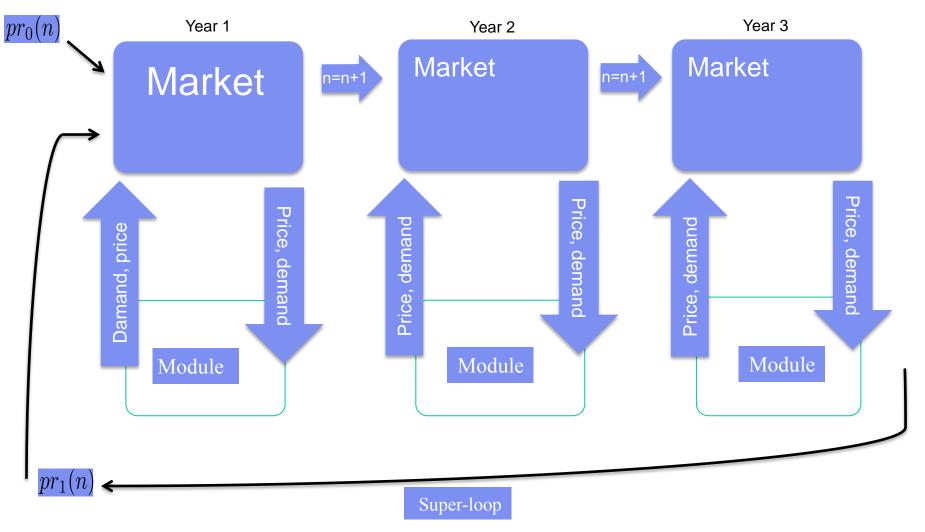
Adopt both electric car and Diesel hybrid....But only one of these can happen – there isn't enough demand for vehicles for both to be necessary

=> Interactions should be incorporated on MACCS, and no exclusive measures can be included


Activity at Imperial College

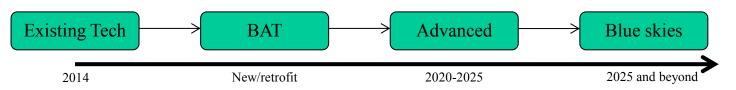
SGI modelling - headline questions

- What is the role of gas in future low carbon energy systems?
- What conditions may lead to stranded assets why, where, when?
- What technology R&D should we invest in?


ModUlar energy system Simulation Environment (MUSE)

- Partial equilibrium
 on the energy
 system (models
 supply and demand)
- Engineering-led and technology-rich
- Modular: Each sector is modelled in a way that is appropriate for that sector
- Microeconomic foundations: all sectors agree on price and quantity for each energy commodity
- Limited foresight decision makers
- Policy instruments explicitly modelled
- Simple macro feedbacks

MUSE module high-level detail – Power sector Other sectors **Market Module** Fuel prices and CO2_e projection Electricity demand projection **Existing Capacity** (inc. time-slice information) New tech. characterisation Capacity Expansion Fuel demand **Operation/Dispatch** and emissions Markup and/or Regulatory layer Price (time-sliced)


MUSE solve structure - foresight

Application 1: Technology road-mapping

What a technology roadmap could look like

- Existing technology; provides a starting point. Known costs and technology performance. TRL 9.
- Best Available Technology (BAT); defines industry-leading standard of proven systems already in use. Known costs and technology performance. TRL 7-8.
- Advanced concepts; known design concepts that could improve energy efficiency, yet to be implemented. Estimated costs and modelled technology performance. TRL 5-7.

```
Value analysis
```

Cost analysis

• Speculative research; "what if" scenarios. Unknown costs with research required to estimate performance. TRL 1-4.

Application 2: R&D prioritisation

- Prioritization of technology R&D investment for higher TRLs (industry-led)
 - Tier 1 (buy): Technologies that always appear in model solutions across ranges of analyses.
 - Tier 2 (hedge): Technologies that exhibit dependencies on the assumptions in sensitivity analyses, but offer significant value where they materialise. University partnership can be helpful.
- Cutting edge blue sky technology research for lower TRLs (university-led)
 - Tier 3 (high risk, high return): "What if" scenario assessment to test hypotheses on the importance of more radical technological change.

Selection of approaches

Model	Solve characteristics				detail	ħ	scope of regions)	odel	Open modelling
	Overall solution aim	Temporal	Equilibriu m	Top-down or bottom-up	Tech. d	Foresight	Geo sci (no. of I	Open model	Open m
AIM/Enduse	Minimise system cost	Inter-temporal	Partial	Bottom-up	High	Perfect	Global (32)	✓	✓
GCAM	Market sharing based on LEC	Recursive dynamic	Partial	Bottom-up	High	Муоріс	Global (14)	✓	✓
IMACLIM	Simulate economic growth	Recursive dynamic	General	Top-down	Low	Муоріс	Global (12)	×	×
IMAGE- TIMER	Market simulation	Recursive dynamic	Partial	Bottom-up	Int.	Муоріс	Global (26)	×	×
MERGE	Maximise profit/utility	Inter-temporal	General	Top-down	Low	Perfect	Global (12)	✓	✓
MUSE	Simulate market equilibrium	Recursive dynamic	Partial	Bottom-up	High	Imperfect	Global (~30)	✓	~
REMIND	Maximise welfare	Inter-temporal	General	Top-down	Low	Perfect	Global (11)	×	×
ETSAP- TIAM	Maximise surplus	Inter-temporal	Partial	Bottom-up	High	Perfect	Global (15)	×	✓
WITCH	Simulate economic growth	Inter-temporal	General	Top-down	Int.	Perfect	Global (12)	×	×

SGI modelling work plan

Gas Technology Modelling Environment Work Plan										
	2014	2015				2016				
Task/Time	Q3	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Literature review										
Overarching model formulation (Milestone)										
Model Implementation										
- Control Block										
- Upstream Module										
- Power Sector Module										
- Industry Module										
- Other Modules (stubs)										
Beta Version (Milestone)							\star			
Version 1.0 (Milestone)										*

Grantham Institute Energy Modelling Team

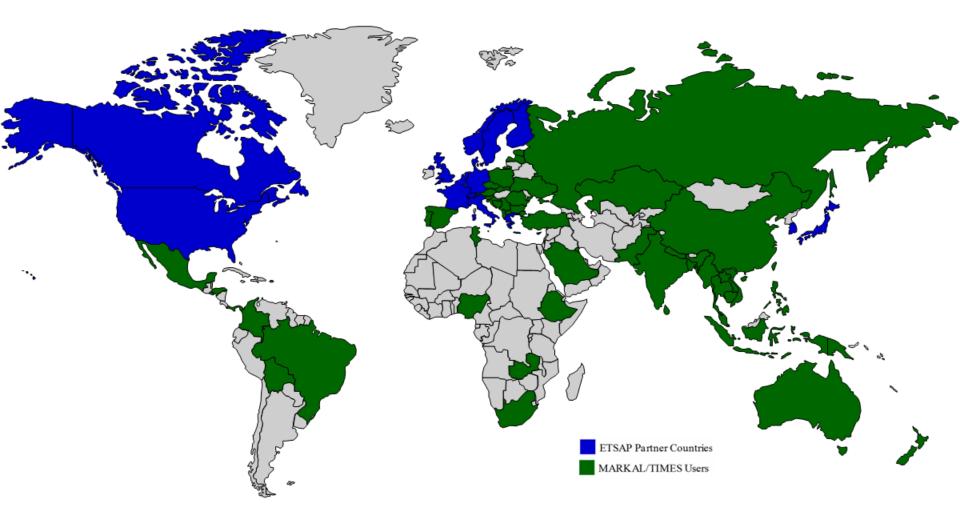
Programme Lead

Research Lead

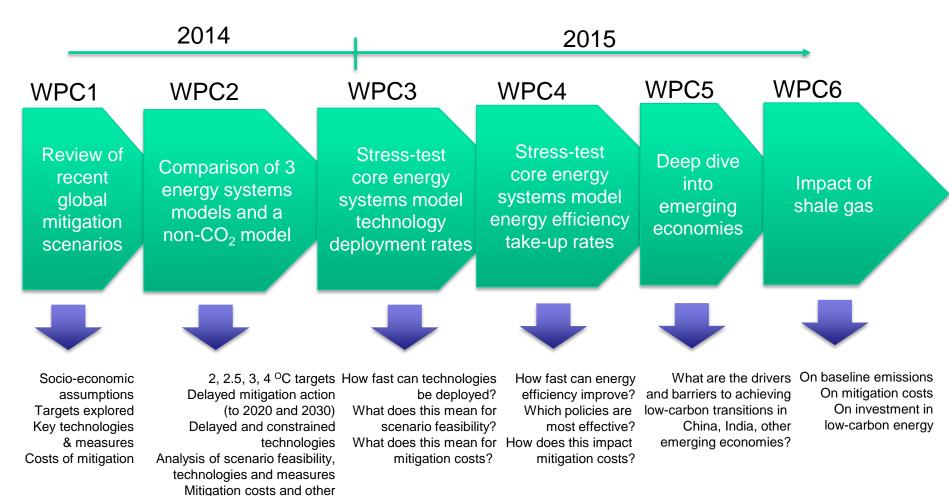
Flo Steiner

Adam Hawkes

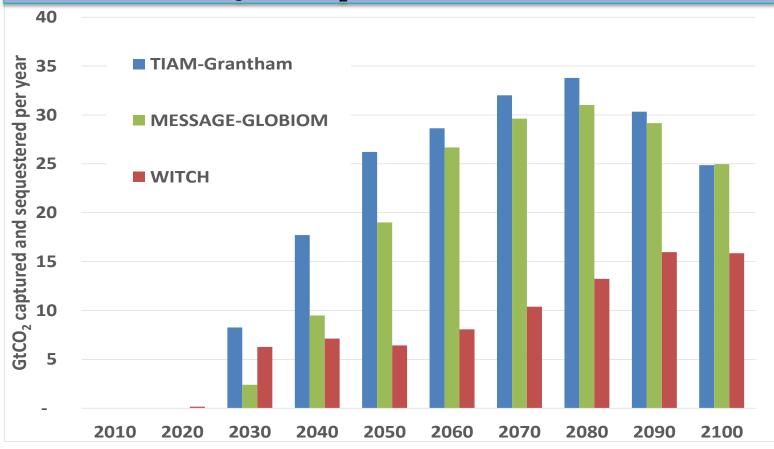
Ajay Gambhir


Tamaryn Napp

Sheridan Few


PhD Students

TIMES Modelling (IEA-ETSAP)


AVOID 2 – mitigation modelling work programme

impacts

Reliance on novel technologies (CCS)

In 2C scenario with global action delayed to 2020, TIAM-Grantham and MESSAGE see 30 GtCO₂/year captured by 2070 – the level of global CO₂ emissions in 2008

New challenges

- Spatial and temporal scales
- The human dimension
- Complexity science
- Uncertainty
- Communication and Transparency

Stefan Pfenninger, Adam Hawkes, James Keirstead, Energy systems modeling for twenty-first century energy challenges, Renewable and Sustainable Energy Reviews, Volume 33, May 2014, Pages 74-86

Thank you

a.hawkes@imperial.ac.uk